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Abstract. Ensemble selection deals with the reduction of an en-
semble of predictive models in order to improve its efficiency and
predictive performance. A number of ensemble selection methods
that are based on greedy search of the space of all possible ensemble
subsets have recently been proposed. This paper contributes a novel
method, based on a new diversity measure that takes into account the
strength of the decision of the current ensemble. Experimental com-
parison of the proposed method, dubbed Focused Ensemble Selec-
tion (FES), against state-of-the-art greedy ensemble selection meth-
ods shows that it leads to small ensembles with high predictive per-
formance.

1 Introduction

Ensemble methods [6] has been a very popular research topic dur-
ing the last decade. Their success arises from the fact that they offer
an appealing solution to several interesting learning problems of the
past and the present, such as: improving predictive performance over
a single model, scaling inductive algorithms to large databases, learn-
ing from multiple physically distributed data sets and learning from
concept-drifting data streams.

Typically, ensemble methods comprise two phases: the production
of multiple predictive models and their combination. Recent work
[9, 8, 7, 15, 4, 10, 11, 2], has considered an additional intermedi-
ate phase that deals with the reduction of the ensemble size prior to
combination. This phase is commonly named ensemble pruning, se-
lective ensemble, ensemble thinning and ensemble selection, the last
one of which is used within this paper.

Ensemble selection is important for two reasons: efficiency and
predictive performance. Having a very large number of models in an
ensemble adds a lot of computational overhead. For example, deci-
sion tree models may have large memory requirements [9] and lazy
learning methods have a considerable computational cost during ex-
ecution. The minimization of run-time overhead is crucial in certain
applications, such as stream mining. Equally important is the second
reason, predictive performance. An ensemble may consist not only of
high performance models, but also of models with lower predictive
performance. Intuitively, combining good and bad models together
will not have the expected result. Pruning the low-performing mod-
els while maintaining a good diversity of the ensemble is typically
considered as a proper recipe for a successful ensemble.

The problem of pruning an ensemble of classifiers has been proved
to be NP-complete [14]. Exhaustive search for the best subset of clas-
sifiers isn’t tractable for ensembles that contain a large number of
models. Greedy approaches, such as [2, 4, 9, 10, 11], are fast, as they
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consider a very small part of the space of all combinations. These
methods, start with an initial ensemble (empty or full) and search in
the space of the different ensembles, by iteratively expanding or con-
tracting the initial ensemble by a single model. The search is guided
by either the predictive performance or the diversity of the alternative
ensembles.

This paper contributes a novel method for greedy ensemble selec-
tion, based on a new diversity measure that takes into account the
strength of the decision of the current ensemble. Experimental com-
parison of the proposed method, dubbed Focused Ensemble Selec-
tion (FES), against state-of-the-art greedy ensemble selection meth-
ods shows that it leads to small ensembles with high predictive per-
formance.

The remainder of this paper is structured as follows: Section 2
presents background information on ensemble methods and Section
3 reviews previous work on ensemble selection. Section 4 introduces
the proposed method. Section 5 presents the setup of the experimen-
tal study and Section 6 discusses the results. Finally, Section 7 con-
cludes this work.

2 Ensemble Methods

2.1 Producing the Models

An ensemble can be composed of either homogeneous or heteroge-
neous models. Homogeneous models derive from different execu-
tions of the same learning algorithm by using different values for
the parameters of the learning algorithm, injecting randomness into
the learning algorithm or through the manipulation of the training
instances, the input attributes and the model outputs [6]. Two popu-
lar methods for producing homogeneous models are bagging [3] and
boosting [13].

Heterogeneous models derive from running different learning al-
gorithms on the same dataset. Such models have different views
about the data, as they make different assumptions about them. For
example, a neural network is robust to noise in contrast to a k-nearest
neighbor classifier.

2.2 Combining the Models

A lot of different ideas and methods have been proposed in the past
for the combination of classification models. The main motivation
underlying this research is the observation that there is no single clas-
sifier that performs significantly better in every classification prob-
lem [18]. The necessity for high classification performance in some
critical domains (e.g. medical, financial, intrusion detection) have
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urged researchers to explore methods that combine different classifi-
cation algorithms in order to overcome the limitations of individual
learning paradigms.

Unweighted and Weighted Voting are two of the simplest methods
for combining not only Heterogeneous but also Homogeneous mod-
els. In Voting, each model outputs a class value (or ranking, or prob-
ability distribution) and the class with the most votes (or the high-
est average ranking, or average probability) is the one proposed by
the ensemble. In Weighted Voting, the classification models are not
treated equally. Each model is associated with a coefficient (weight),
usually proportional to its classification accuracy.

Let x be an instance and mi, i = 1..k a set of models that output
a probability distribution mi(x, cj) for each class cj , j = 1..n. The
output of the (weighted) voting method y(x) for instance x is given
by the following mathematical expression:

y(x) = arg max
c

kX
i=1

wimi(x, cj),

where wi is the weight of model i. In the simple case of voting (un-
weighted), the weights are all equal to one, that is, wi = 1, i = 1..k.

3 Ensemble Selection

3.1 Greedy Approaches

Margineantu and Dietterich [9] introduce heuristics to calculate the
benefit of adding a classifier to an ensemble, using forward selec-
tion in a number of them. These heuristics are based on the diversity
and the performance of the classifiers. The authors experiment with
boosting ensembles and conclude that pruning can help an ensemble
to increase its predictive performance.

Fan et al. [7] prune an ensemble of classifiers using forward se-
lection of the classification models, like in [9]. As a heuristic, they
use the benefit that is obtained by evaluating the combination of the
selected classifiers with the method of voting. Their results show that
pruning increases the predictive performance and speeds up the run
time of an ensemble of C4.5 decision trees trained on disjoint parts
of a large data set.

Caruana et al. [4] produce an ensemble of 1000 classifiers us-
ing different algorithms and sets of parameters for these algorithms.
They subsequently prune the ensemble following an approach that is
similar to [9]. This way they manage to achieve very good predictive
performance compared to state-of-the-art ensemble methods.

Banfield et al. [2], propose a method that selects a subensemble
in a backward manner. The authors reward each classifier according
to its decision with regard to the ensemble decision. The method re-
moves the classifier with the lowest accumulated reward.

Martinez-Munoz et al. [11, 10] present two algorithms for pruning
an ensemble of classifiers. In [11] the authors define for each classi-
fier a vector with dimensionality equal to the size of the training set,
where each element i corresponds to the decision of the classifier for
the instance i. The classifier is added to the ensemble according to its
impact in the difference between the vector of the ensemble (average
of individual vectors) with a predefined reference vector. This refer-
ence vector indicates the desired direction towards which the vector
of the ensemble must align. In [10], the authors produce an initial
ensemble of bagging models. Then using a forward selection proce-
dure, they add to the ensemble the classifier that disagrees the most
with the current ensemble. The process ends when a predefined size
for the final pruned ensemble is reached.

3.2 Other Approaches

Giacinto and Roli [8] employ Hierarchical Agglomerative Cluster-
ing (HAC) for ensemble selection. This way they implicitly used the
complete link method for inter-cluster distance computation. Pruning
is accomplished by selecting a single representative classifier from
each cluster. The representative classifier is the one exhibiting the
maximum average distance from all other clusters.

Zhou and Tang [20] perform stochastic search in the space of
model subsets using a standard genetic algorithm. Standard genetic
operations such as mutations and crossovers are used and default val-
ues are used for the parameters of the genetic algorithm. The voted
performance of the ensemble is used as a function for evaluating the
fitness of individuals in the population.

Tsoumakas et al. [15] prune an ensemble of heterogeneous clas-
sifiers using statistical procedures that determine whether the differ-
ences in predictive performance among the classifiers of the ensem-
ble are significant. Only the classifiers with significantly better per-
formance than the rest are retained and subsequently combined with
the methods of (weighted) voting.

Zhang et al. [19], formulate the ensemble pruning problem as a
mathematical problem and apply semi-definite programming (SDP)
techniques. Their algorithm requires the number of classifiers to re-
tain as a parameter and runs in polynomial time.

Partalas et al. [12], present an ensemble selection method under
the framework of Reinforcement Learning, where the learning mod-
ule finds an optimal policy for including or excluding a classifier
from the ensemble.

4 Focused Ensemble Selection

Let H = {ht, t = 1, 2, . . . , T } be the set of classifiers (or hypothe-
ses) of an ensemble, where each classifier ht maps an instance x to
a class label y, ht(x) = y. Greedy ensemble selection approaches
start either with an empty set of classifiers (S = ∅) or the complete
ensemble (S = H). For simplicity of presentation we focus on the
former initial conditions only, yet our argumentation holds for both.

At each step the current subset S is expanded by a model ht ∈
H \ S, based on either the predictive performance [9, 7, 4] or the
diversity [9, 11, 10, 2] of the expanded ensemble S

S
{ht}. Meth-

ods that are based on diversity have been shown to be more effec-
tive than those that are based on accuracy. The methods in [10, 2]
measure the diversity of candidate ensembles S

S
{ht} by compar-

ing the decision of the current ensemble S with the decision of
candidate classifiers ht ∈ H \ S on a set of evaluation examples
(xi, yi), i = 1, 2, . . . , N . Each example consists of a feature vector
xi and a class label yi. We can distinguish 4 events concerning both
of these decisions:

etf : y = ht(xi) ∧ y �= S(xi)

eft : y �= ht(xi) ∧ y = S(xi)

ett : y = ht(xi) ∧ y = S(xi)

eff : y �= ht(xi) ∧ y �= S(xi)

where S(xi) is the classification of instance xi by ensemble S.
This classification is derived from the application of an ensemble
combination method on S, which usually is voting.

The diversity measure in [10] is based on etf only, while the one
in [2] neglects eft. We argue that all events should contribute to the
calculation of an appropriate diversity measure. Event eft for exam-
ple, corresponds to the case where the candidate classifier errs, while
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the ensemble is correct. Although, the ensemble is correct, we do not
know how many votes lead to its correct decision. If the difference in
votes between the correct and wrong decision is marginal, then this
candidate classifier might lead to a misclassification of example xi

by the ensemble S
S
{ht}.

The above example concerning event eft, brings up another disad-
vantage of the methods in [10, 2]. The decisions of individual models
within the current ensemble are not separately considered, as the cur-
rent ensemble is treated as a whole. We hypothesize that better results
can be obtained from a measure that takes into account the strength
of the current ensemble’s decision. We argue that an example that
is incorrectly (correctly) classified by most of the members of the
current ensemble, should not affect strongly the ensemble selection
method, as this is probably a very hard (easy) example. On the other
hand, examples that are misclassified by about half of the ensemble’s
members, are near to change status (correct/incorrect classification)
and should strongly affect the method.

In order to deal with the above issues, we propose a diversity mea-
sure that considers all events and takes into account the strength of
the current ensemble’s decision. We define the following quantities:
NTi, which denotes the proportion of models in the current ensem-
ble S that classify example (xi , yi) correctly, and NFi = 1−NTi,
which denotes the number of models in S that classify it incorrectly.

The proposed method, dubbed Focused Ensemble Selection
(FES), starts with the full ensemble (S = H) and iteratively removes
the classifier ht ∈ S that minimizes the following quantity:

fes(ht) =
NX

i=1

“
NTi ∗ I(etf ) − NFi ∗ I(eft) +

+NFi ∗ I(ett) − NTi ∗ I(eff )
”
,

where I(true) = 1 and I(false) = 0.
Note that events etf and ett increase the metric, because the can-

didate classifier is correct, while events eft and eff decrease it, as
the candidate classifier is incorrect. The strength of increase/decrease
depends on the strength of the ensemble’s decision. If the current en-
semble S is incorrect, then the reward/penalty is multiplied by the
proportion of correct models in S. On the other hand, if S is correct,
then the reward/penalty is multiplied by the proportion of incorrect
models in S. This weighting scheme focuses the attention of the al-
gorithm to examples that are near to change status, while it overlooks
examples whose correct classification is either very easy or very hard.

In event etf for example, the addition of a correct classifier when
the ensemble is wrong contributes a gain of 1 multiplied by the pro-
portion of classifiers in that ensemble that are correct. The rationale
is that if the number of classifiers is small, then correct classifica-
tion of this example is hard to achieve and thus the contribution is
penalized, while if the number of classifiers is large, then the cor-
rect classification of this example is easier to achieve and thus the
contribution is rewarded.

An issue that is worth mentioning here concerns the dataset used
for calculating the diversity (or predictive performance) measures in
greedy ensemble selection methods. One approach is to use the train-
ing set for evaluation, as in [11]. This offers the benefit that plenty of
data will be available for evaluation and training, but is susceptible to
overfitting. Another approach is to withhold a part of the training set
for evaluation, as in [4, 2] and the REPwB method in [9]. This is less
prone to overfitting, but reduces the amount of data that are available
for training and evaluation compared to the previous approach. FES
supports both of these approaches.

Another important issue that concerns ensemble selection meth-
ods, is when to stop adding classifiers in the ensemble, or, in other
words, how many models should the final ensemble include. One
solution is to perform the search until all models have been added
into (removed from) the ensemble and select the ensemble with the
highest accuracy on the evaluation set. This approach has been used
in [4]. Others prefer to select a predefined number of models, ex-
pressed as a percentage of the original ensemble [9, 7, 11, 2]. FES
supports both of these approaches, but follows the former by default,
because it is more flexible and automated, since it doesn’t require the
specification of a percentage.

Algorithm 1 presents the proposed method in pseudocode. Its time
complexity is O(T 2|S|N), which can be optimized to O(T 2N) if
the predictions of the current ensemble are updated incrementally
each time a classifier is removed from it.

Algorithm 1 The proposed method in pseudocode
Require: Ensemble of classifiers H

1: S = H

2: B = ∅
3: acc = 0
4: while S �= ∅ do
5: h = arg min

h ∈S

fes(ht)

6: S = S \ {h}
7: acctemp = Accuracy(S)
8: if acctemp > acc then
9: acc = acctemp

10: B = S

11: end if
12: end while
13: return B

5 Experimental Setup

5.1 Datasets

We experimented on 12 data sets from the UCI Machine Learning
repository [1]. Table 1 presents the details of these data sets (Folder
in UCI server, number of instances, classes, continuous and discrete
attributes, percentage of missing values). We avoided using datasets
with less than 650 examples, so that an adequate amount of data is
available for training, evaluation and testing.

Table 1. Details of data sets: Folder in UCI server, number of instances,
classes, continuous and discrete attributes, percentage of missing values

id UCI Folder Inst Cls Cnt Dsc MV(%)

d1 car 1728 4 0 6 0.00
d2 cmc 1473 3 2 7 0.00
d3 credit-g 1000 2 7 13 0.00
d4 kr-vs-kp 3196 2 0 36 0.00
d5 hypothyroid 3772 4 7 23 5.40
d6 segment 2310 7 19 0 0.00
d7 sick 3772 2 7 23 5.40
d8 soybean 683 19 0 35 0.00
d9 tic-tac-toe 958 2 0 9 0.00
d10 vehicle 946 4 18 0 0.00
d11 vowel 990 11 3 10 0.00
d12 waveform-5000 5000 3 21 0 0.00
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5.2 Methodology

The methodology of the experiments proceeds as follows: Initially,
the whole dataset is split into three disjunctive parts, a training set,
an evaluation set and a test set with 40%, 40% and 20% of the initial
dataset respectively.

In this paper, we focus on ensembles of heterogeneous models. We
therefore run different learning algorithms with different parameters
on the training set, in order to produce 200 models that constitute the
initial ensemble. The WEKA machine learning library [17] was used
as the source of learning algorithms. We trained 24 multilayer per-
ceptrons (MLPs), 60 kNNs, 110 support vector machines (SVMs),
2 naive Bayes classifiers and 4 decision trees. The different param-
eters used to train the algorithms were the following (the rest of the
parameters were left unchanged in their default values):

• MLPs: we used 6 values for the nodes in the hidden layer {1, 2,
4, 8, 32, 128} and 4 values for the momentum term {0.0, 0.2, 0.5,
0.8}.

• kNNs: we used 20 values for k distributed evenly between 1 and
the plurality of the training instances. We also used 3 weight-
ing methods: no-weighting, inverse-weighting and similarity-
weighting.

• SVMs: we used 11 values for the complexity parameter {10−7,
10−6, 10−5, 10−4, 10−3, 10−2, 0.1, 1, 10, 100, 1000}, and 10
different kernels. We used 2 polynomial kernels (of degree 2 and
3) and 8 radial kernels (gamma ∈ {0.001, 0.005, 0.01, 0.05, 0.1,
0.5, 1, 2}).

• Naive Bayes: we built one model with default parameters and one
with kernel estimation.

• Decision trees: we used 2 values for the confidence factor ({0.25,
0.5}), and 2 values for Laplace smoothing ({true, false}).

We compare the performance of our approach, Focused Ensem-
ble Selection (FES), against the following greedy ensemble selection
methods: Forward Selection (FS) [4], Complementariness (COM)
[10], Margin Distance Minimization (MDM) [11] and Concurrency
Thining (CT) [2].

The evaluation set is used for the calculation of diversity and per-
formance measure for all competing algorithms, because preliminary
experiments have shown that it leads to significantly better results
than using the training set in ensembles of heterogeneous models.
Voting was used for model combination in FES, FS, COM and CT.
Similarly to FES, all rival algorithms follow the approach of [4],
which selects the ensemble with the highest accuracy on the evalua-
tion set, instead of using an arbitrary percentage of selection. In ad-
dition, the following section discuses comparative results with alter-
native versions of the algorithms that select a fixed percentage (20%)
of models. The resulting ensemble is evaluated on the test set, using
voting for model combination.

We also calculate the performance of the best single model (BSM)
in the ensemble, and the performance of the complete ensemble of
200 models (ALL), using voting for model combination, based on
the performance of the models on the evaluation dataset. The whole
experiment is performed 10 times for each dataset and the results are
averaged.

6 Results and Discussion

Table 2 presents the classification accuracy of each algorithm on each
dataset. The accuracy of the winning algorithm at each dataset is

highlighted with bold typeface. A first observation is that the pro-
posed approach achieves the best performance in most of the datasets
(6), followed by BSM (3), CT (2), MDM and FS (1) and finally COM
and ALL (0).

Table 2. Classification accuracy for each algorithm on each dataset.

id FES FS COM CT MDM BSM ALL
d1 98.3 98.1 98.2 98.4 97.4 99.4 82.7
d2 52.7 52.4 51.2 52.3 51.5 42.8 47.6
d3 74.4 74.2 73.2 74.0 73.4 69.5 70.8
d4 99.0 99.1 99.0 99.0 97.9 95.4 95.6
d5 99.3 99.2 99.2 99.3 97.8 90.7 91.9
d6 96.9 96.9 96.9 96.8 96.5 98.5 97.8
d7 98.1 98.0 98.0 98.2 97.4 95.2 95.4
d8 91.5 91.1 91.0 91.6 91.7 90.1 89.8
d9 98.7 98.5 98.6 98.6 98.4 95.8 63.9

d10 81.1 80.1 80.8 80.9 79.1 64.4 75.3
d11 90.3 90.5 89.8 90.3 87.8 98.9 90.7
d12 86.0 85.7 85.7 85.9 84.4 72.7 80.7

According to [5], the appropriate way to compare two or more
algorithms on multiple datasets is based on their average rank across
all datasets. On each dataset, the algorithm with the highest accuracy
gets rank 1.0, the one with the second highest accuracy gets rank 2.0
and so on. In case two or more algorithms tie, they all receive the
average of the ranks that correspond to them.

Table 3 presents the rank of each algorithm on each dataset, along
with the average ranks. The proposed approach has the best average
rank (2.17), followed by CT (2.71), FS (3.29), COMP (4.0), MDM
(4.92), BSM (5.33) and ALL (5.58). Although the difference of the
average ranks between the 2nd best algorithm (CT) and FES is small,
CT achieves the highest accuracy (and rank) in only two datasets. We
therefore argue that FES should be preferred over CT and the rest of
its rivals for ensemble selection.

Table 3. Corresponding rank for each algorithm on each dataset.

id FES FS COM CT MDM BSM ALL
d1 3.0 5.0 4.0 2.0 6.0 1.0 7.0
d2 1.0 2.0 5.0 3.0 4.0 7.0 6.0
d3 1.0 2.0 5.0 3.0 4.0 7.0 6.0
d4 3.0 1.0 3.0 3.0 5.0 7.0 6.0
d5 1.5 3.5 3.5 1.5 5.0 7.0 6.0
d6 4.0 4.0 4.0 6.0 7.0 1.0 2.0
d7 2.0 3.5 3.5 1.0 5.0 7.0 6.0
d8 3.0 4.0 5.0 2.0 1.0 6.0 7.0
d9 1.0 4.0 2.5 2.5 5.0 6.0 7.0

d10 1.0 4.0 3.0 2.0 5.0 7.0 6.0
d11 4.5 3.0 6.0 4.5 7.0 1.0 2.0
d12 1.0 3.5 3.5 2.0 5.0 7.0 6.0

Av. Rank 2.17 3.29 4.0 2.71 4.92 5.33 5.58

We next turn to statistical procedures, in order to investigate
whether the performance differences between FES and the rest of
the algorithms are significant. According to [5], the appropriate sta-
tistical test for the comparison of two algorithms on multiple datasets
is the Wilcoxon signed rank test [16]. Note that the majority of past
approaches have used the paired t-test, which is inappropriate for this
task. We performed 6 tests, one for each paired comparison of FES
with each of the other algorithms, at a confidence level of 95%. The
test found that FES is significantly better than all other algorithms,
apart from CT.
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Table 4 shows the average size of the final ensembles that are se-
lected by the algorithms on each dataset. A general remark is that
the number of selected models is small compared to the size of the
original ensemble. Only 5.05% to 14.95% of the 200 classifiers are
finally selected by the algorithms. Furthermore, the number of mod-
els selected based on the maximum accuracy in the evaluation set, is
smaller than using a fixed size, such as 20% [10, 11] or 10% [2] of
the models, leading to further reduction of the computational cost of
the final ensemble.

Table 4. Average size of selected ensembles for each algorithm.

id FES FS COMP CT MDM
d1 11.6 6.1 5.1 6.5 20.9
d2 18.3 15.9 13.4 16.7 26.1
d3 15.7 14.4 20.9 12.7 33.7
d4 13.4 11.1 11.8 11.2 27.9
d5 11.7 5.8 5.0 7.2 6.7
d6 20.5 17.2 17.8 15.3 29.6
d7 7.2 3.9 3.5 3.7 9.3
d8 23.3 13.7 11.0 10.9 40.0
d9 27.9 9.4 11.1 11.2 31.9
d10 8.6 13.3 10.3 10.6 21.9
d11 8.5 8.3 6.8 4.4 31.8
d12 20.8 40.6 15.8 15.1 79.1

Av. Size 15.6 13.3 11.0 10.5 29.9

In order to investigate whether the performance of greedy ensem-
ble selection algorithms is significantly better when the size of the
final ensemble is selected dynamically, rather than using a prede-
fined percentage of models (20%), we performed Wilcoxon tests on
the predictive performance of the two alternative versions of each
algorithm on all datasets. With 95% confidence the test showed no
statistical differences, but the results were in favor of the dynamic
approach.

Figure 1 presents the mean number of each type of models that are
selected by FSD across all datasets for the type of models that are se-
lected. FSD selects on average 7.5 SVMs, 5.2 MLPs, 1.3 kNNs, 1.2
DTs and 0.4 NB models. This shows that SVMs and MLPs, which
are traditionally highly accurate classifiers, dominate the final ensem-
bles. On the other hand we notice that the final ensembles include on
average 30% of the trained DTs, 22% of the trained MLPs and NB
models, 7% of SVMs and 2% of kNNs. This shows that our produc-
tion procedure led to quite diverse DTs, MLPs and NB models, while
on the other hand most of the produced SVMs and kNNs were prob-
ably very similar. These results can be taken into account, in order to
produce a more diverse initial ensemble.
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Figure 1. Aggregates for FSD concerning the type of models that are
selected.

7 Conclusions

This paper contributed a new method for greedy ensemble selection,
named Focused Ensemble Selection (FES). The main idea of the
method is to overlook examples that are either very easy or very hard,
and focus on those that are near to change status (correct/incorrect
classification).

We performed experiments comparing FES with state-of-the-art
methods from the related bibliography. Although FES was not found
significantly better than all competitors that were considered in this
paper, it still was found consistently better based on both the average
rank and the number of datasets, where it achieved the highest accu-
racy. We consider that the main novel idea of this paper (taking into
consideration the strength of the ensemble’s classification) is a posi-
tive contribution that could be valuable to other researchers working
in ensemble selection and ensemble methods in general.
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