
Prototype-based Domain Description
Fabrizio Angiulli1

Abstract. In this work a novel one-class classifier, namely the
Prototype-based Domain Description rule (PDD), is presented. The
PDD classifier is equivalent to the NNDD rule under the infinity
Minkowski metric for a suitable choice of the prototype set. The
concept of PDD consistent subset is introduced and it is shown that
computing a minimum size PDD consistent subset is in general not
approximable within any constant factor. A logarithmic approxima-
tion factor algorithm, called the CPDD algorithm, for computing a
minimum size PDD consistent subset is then introduced. The CPDD
algorithm has some parameters which allow to tune the trade off be-
tween accuracy and size of the model. Experimental results show
that the CPDD rule sensibly improves over the CNNDD classifier in
terms of size of the subset, while guaranteeing a comparable classi-
fication quality.

1 INTRODUCTION

Domain description, or one-class classification, is a classification
technique whose goal is to distinguish between objects belonging to
a certain class and all the other objects of the space [11]. The Nearest
Neighbor Domain Description rule (NNDD) [1] is a one-class clas-
sifier accepting test objects whose nearest neighbors distances in a
reference data set, assumed to model normal behavior, lie within a
certain threshold. In particular, given a data set of objects, also called
reference set, and two parameters k and θ, the NNDD associates a
feature vector δ(x) ∈ R

k with each object x composed of the dis-
tances from x to its first k nearest neighbors in the reference set. The
classifier accepts x if and only if δ(x) belongs to the hyper-sphere
(according to one of the Lr Minkowski metric, r ∈ {1, 2, . . . ,∞})
centered in the origin of R

k and having radius θ, i.e. if and only if
‖δ(x)‖r ≤ θ. The CNNDD rule is a variant of the NNDD rule using
a selected subset of the data set as the reference set [1].

In this work a novel nearest neighbor based one-class classifier,
called the Prototype-based Nearest Neighbor classifier (PDD), is in-
troduced. A prototype set is a set of objects xi, also called prototypes,
each of which is associated with a radius R(xi). Given parameter θ,
an object y is accepted if it lies within distance θ − R(xi) from
some prototype xi. It is shown that the PDD classifier is equivalent
to the NNDD rule under the infinity Minkowski metric (that is for
r = ∞) for a suitable choice of the prototype set. Then the concept
of PDD consistent subset is introduced, that is a subset of the original
prototype set, which, loosely speaking, accepts all the discarded pro-
totypes. It is shown that computing a minimum size PDD consistent
subset is in general not approximable within any constant factor. A
logarithmic approximation factor algorithm, called the CPDD algo-
rithm, for computing a minimum size PDD consistent subset is then
introduced. The CPDD algorithm has some parameters which allow
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to tune the trade off between accuracy and size of the model. Exper-
imental results show that the CPDD rule sensibly improves over the
CNNDD classifier in terms of size of the subset, while guaranteeing
a comparable classification quality. Moreover, comparison with the
one-class SVM classifier points out that both the compression ratio
and the accuracy of the CPDD are comparable to that of the one-class
SVM classifier, but with some advantages for the CPDD rule.

The rest of the work is organized as follows. Section 2 defines
the Prototype-based Domain Description rule (PDD) and the concept
of PDD consistent subset. Section 3 investigates the computational
complexity of the problem of computing a minimum size PDD con-
sistent subset. Section 4 describes the CPDD rule. Section 5 presents
experimental results. Finally, Section 6 presents conclusions and fu-
ture work.

2 THE PROTOTYPE-BASED DOMAIN
DESCRIPTION RULE

In the following U denotes a set of objects, d a distance metric on U ,
D a set of objects from U , k a positive integer number, θ a positive
real number, and r ∈ {1, 2, . . . ,∞} a Minkowski metric Lr .

A prototype set P is a set of pairs P = {〈x1, r1〉, . . . , 〈xn, rn〉},
where each xi (1 ≤ i ≤ n) is an object of U , also called prototype,
and each ri is a real number, also called prototype radius. Given a
prototype xi, the prototype radius ri associated with xi is also de-
noted by R(xi).

Next the Prototype-based Domain Description one-class classifier
is defined.

Definition 2.1 Given a prototype set P , the Prototype-based Do-
main Description rule (PDD) according to P , d, and θ, is the func-
tion PDDP,d,θ from U to {−1, +1} such that

PDDP,d,θ(y) =

{
+1, if ∃x ∈ P such that d(x, y) + R(x) ≤ θ
−1, otherwise

The PDD rule accepts an input object y (that is returns the value +1)
if y lies within distance R(xi) from some prototype xi.

The PDD rule is a nearest neighbor based one-class classifier. Next
the definition of another nearest neighbor based one-class classifier,
namely the NNDD rule, is recalled, and then the relationship between
there two rules is pointed out.

Given an object x of U , the k-th nearest neighbor nnD,d,k(x)
of x in D according to d is the object y of D such that there exist
exactly k − 1 objects z of D with d(x, z) ≤ d(x, y). If x ∈ D, then
nnD,d,1(x) = x.

The k nearest neighbors distances vector δD,d,k(p) of p in D is

δD,d,k(p) = (d(p, nnD,d,1(p)), . . . , d(p, nnD,d,k(p))).

Definition 2.2 ([1]) The Nearest Neighbor Domain Description rule
(NNDD) according to D, d, k, θ, r, is the function NNDDD,d,k,θ,r
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from U to {−1, +1} such that

NNDDD,d,k,θ,r(p) = sign(θ − ‖δD,d,k(p)‖r),

where sign(x) = −1 if x < 0, and sign(x) = 1 otherwise.

The following definition relates the PDD rule and the NNDD rule.
Given a set of objects D, the prototype set P (D, d, k, θ) associated
with D w.r.t. d, k, and θ is

{〈x, d(x, nnD,d,k(x))〉 | x ∈ D ∧ d(x, nnD,d,k(x)) ≤ θ}.
Relationship between the two rules is clarified by the theorem below.

Theorem 1 Given a set of objects D, and parameters k and θ, it
holds that

(∀x ∈ D)(NNDDD,d,k,θ,+∞(x) = PDDP (D,d,k,θ),d,θ(x)).

Proof. Let x be a generic object of D.
If d(x, nnD,d,k(x)) ≤ θ, then NNDDD,d,k,θ,+∞(x) = sign(θ−

‖δD,d,k(p)‖+∞) = sign(θ − d(x, nnD,d,k(x))) = 1. Further-
more, the pair 〈x, d(x, nnD,d,k(x))〉 belongs to P (D, d, k, θ) and,
hence, d(x, x) + R(x) = 0 + d(x, nnD,d,k(x)) ≤ θ and
PDDP (D,d,k,θ),d,θ(x) = 1.

If d(x, nnD,d,k(x)) > θ, then NNDDD,d,k,θ,+∞(x) = −1.
By contradiction, assume that there exists a pair 〈y, R(y))〉 in
P (D, d, k, θ) such that d(x, y) + R(y) ≤ θ. Since within distance
ry = d(x, y) + d(y, nnD,d,k(y)) from x there are at least k + 1
objects of D, it holds that d(x, nnD,d,k(x)) ≤ ry ≤ θ, which con-
tradicts the hypothesis. �

Thus, from the point of view of the objects belonging to the data set
D, the prototype set P (D, d, θ, k) is the analogue for the PDD rule
of the data set D for the NNDD rule.

When the reference set D is large, space requirements to store D
and time requirements to find the nearest neighbors of an object in
D increase. In the spirit of the reference set thinning problem for the
k-NN-rule [9, 2], the concept of NNDD reference consistent subset
was defined in [1]. In the same spirit, next it is provided the definition
of PDD consistent subset.

Let P be a prototype set and let S be a subset of P . The set S is
said to be a PDD consistent subset of P with respect to d and θ, if
the following relationship hold

(∀〈x, r〉 ∈ P )(PDDP,d,θ(x) = PDDS,d,θ(x)).

Importantly, it also holds that a PDD consistent subset S of the set
P (D, d, θ, k) is the analogue for the PDD rule of the data set D
for the NNDD rule. It can be finally concluded from the concept
of sample compression scheme [7] and from the discussion above
that replacing the prototype set P with a consistent subset S of P
improves both response time and generalization.

3 COMPLEXITY ANALYSIS

In this section the computational complexity of the problem of com-
puting a minimum size PDD consistent subset is investigated. The
reader is referred to [8, 3] for basics on complexity theory, NP opti-
mization problems, and approximation algorithms. Next it is shown
that, in the general case, the problem of computing a minimum size
PDD consistent subset is not in the APX complexity class, which is,
loosely speaking, the class of the NP optimization problems whose
optimal solution can be approximated in polynomial time within a
fixed factor.

Algorithm CPDD

1. for each object xi in D, determine the distance ri between
xi and its k-th nearest neighbor in D

2. for each object xi such that ri ≤ θ, determine the set Ni

composed of the objects y of D such that d(xi, y)+ ri ≤ �θ
3. set P to {xi ∈ D | ri ≤ θ}, and set S and C to the emptyset
4. while |C| ≤ η|P | do

(a) determine the object xj of P such that (break ties in favor
of the object such that the value rj is minimum)

|Nj − C| = max{|Ni − C| : xi ∈ P}
(b) set S to S ∪ {〈xj , rj〉}, and C to C ∪ Nj

5. return the set S

Figure 1. The CPDD algorithm.

Given a prototype set P , distance metric d, and a positive real
number θ, the PDD Consistent Subset Problem 〈P, d, θ〉 is defined
as follows: compute a PDD consistent subset S∗ of P with respect
to d and θ, also said a minimum size PDD consistent subset, such
that, for each PDD consistent subset S of P with respect to d and θ,
|S∗| ≤ |S|.

Given a positive integer m, the decision version 〈P, d, θ, m〉D of
the problem 〈P, d, θ〉 is defined as follows: reply “yes” if there exists
a PDD consistent subset S of P with respect to d and θ such that
|S| ≤ m, and reply “no” otherwise.

Theorem 2 The 〈P, d, θ〉 problem (1) is NP-hard, and (2) is not in
APX.

Proof sketch. (Point 1) Membership is immediate. As for the hard-
ness the proof is by reduction of the Dominating Set Problem [8].
Let G = (V, E) be an undirected graph, and let m ≤ |V | be a
positive integer. The Dominating Set Problem is: is there a subset
U ⊆ V , called dominating set of G, with |U | ≤ m, such that for all
v ∈ (V − U) there exists u ∈ U with {u, v} ∈ E ?

Define the metric dV on the set V of nodes of G as follows:
dV (u, v) = θ, if {u, v} ∈ E, and dV (u, v) = 2θ, otherwise. Let PV

be the set {〈v, 0〉 | v ∈ V }. It can be proved that G has a dominating
set of size m if and only if 〈PV , dV , θ, m〉D is a “yes” instance.

The NP-hardness of the 〈P, d, θ〉 problem follows immediately
from the NP-completeness of its decision version.
(Point 2) It is known that the Minimum Dominating Set Problem, that
is the problem of determining the size of the smallest dominating set
of a graph, is not in APX [4]. We note that Point 1 of this theorem
defines an AP-reduction from the Minimum Dominating Set Prob-
lem to the Minimum PDD Consistent Subset Problem (the reader is
referred to [3] for the definition of AP-reduction). As an immediate
consequence of this reduction, the latter problem does not belong to
APX. �

4 THE CPDD ALGORITHM

Figure 1 shows the algorithm CPDD. Given a data set D, the CPDD
algorithm computes a PDD consistent subset of the prototype set
P (D, d, k, θ) associated with D.

The algorithm receives in input a data set D, parameters k and
θ, and the additional parameters �, η ∈ (0, 1], whose use will be
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(a) θ = 0.2, � = 1.00, η = 1.00 (b) θ = 0.2, � = 0.75, η = 1.00 (c) θ = 0.2, � = 0.75, η = 0.99

(d) θ = 0.1, � = 1.00, η = 1.00 (e) θ = 0.1, � = 0.75, η = 1.00 (f) θ = 0.1, � = 0.75, η = 0.99

Figure 2. Examples of PDD consistent subsets computed by the CPDD algorithm.

discussed in the following (if not otherwise specified, it is assumed
that � and η are both set to one).

Initially, for each object xi of D, the algorithm determines the
distance ri to its k-th nearest neighbor (step 1) and also the set Ni

of the objects of D lying within distance θ − ri from it (step 2).
The set P built in step 3 is composed of the objects occurring in the
prototype set P (D, d, k, θ).

Then the algorithm computes the consistent subset S following
a greedy strategy (step 4). The set C consists of the objects of P
which are correctly classified by the current subset S. At each step,
the object xj maximizing the number of objects in Nj−C is selected
and inserted in S, until C contains at least the fraction η of the objects
in P (until C covers P , if η = 1).

Next theorem shows that the the size of the solution returned by
the algorithm has an approximation factor.

Theorem 3 The CPDD algorithm provides a solution having a 1 +
ln(n) approximation factor.

Proof. Assume that the parameter � is set to one. We note that the
set Ni consists of precisely all the prototypes of P (D, d, θ, k) which
are correctly recognized through the PDD rule if xi is included in
the PDD consistent subset S.

Given a finite set S and a collection C of subsets of S, a set cover
for S is a subset C′ of C such that every element in S belongs to
at least one member of C′. It is clear that the PDD consistent sub-
sets of P are in one-to-one correspondence with the set covers of
{Ni | xi ∈ P}. The result hence follows by noting that step 4 of the
algorithm CPDD is analogous to the greedy algorithm for the Mini-
mum Set Cover Problem [6], the problem of computing a set cover of
minimum size, which achieves an approximation factor of 1+ln(n),
where n is the size of the set to be covered. �

Note that steps 3-5 compute a PDD consistent subset of any arbitrary
prototype set.

Figure 2 reports some examples of PDD consistent subsets com-
puted by the CPDD algorithm. The data set (blue points) is composed
of ten thousands points in the plane. The parameter k was set to 5,
while two distinct values for the parameters θ, � and η were consid-
ered, namely 0.1 and 0.2 for θ, 0.75 and 1.0 for �, and 0.99 and 1.0
for η. The Euclidean distance was employed as distance function d.

Stars (in red color) denote the prototypes belonging to the PDD
consistent subset S, while the (black) curve denotes the decision
boundary of the classifier PDDS,d,θ . The relative size of the PDD
consistent subsets reported in Figure 2 is summarized in the follow-
ing table.

� = 1.00 � = 0.75 � = 0.75
η = 1.00 η = 1.00 η = 0.99

θ = 0.2 70 (0.7%) 128 (1.3%) 62 (0.6%)
θ = 0.1 227 (2.3%) 439 (4.4%) 337 (3.4%)

From the figure and the table above it is clear that the smaller the
value of the parameter θ, the closer the class boundary to the data
set shape, the greater the number of data set objects rejected by the
PDD rule, and the greater the number of prototypes belonging to the
consistent subset.

Moreover, the smaller the value of the parameter �, the greater the
number of prototypes belonging to the consistent subset, the more
accurate the form of the decision boundary, and the smaller the prob-
ability of rejecting objects belonging to the class represented by the
data set. For example, in Figure 2(a) (� = 1) there is a “hole”, ap-
proximately centered in (−0.78,−0.78), in the lower tail of the data
set (but also other smaller “holes” exist along the data set shape),
while the same region is covered by the prototypes in Figure 2(b)
(� = 0.75).

Finally, the smaller the value of the parameter η, the smaller the
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Figure 3. Comparison between the CPDD and the CNNDD rule.

number of prototypes belonging to the consistent subset, but the
greater the probability of rejecting objects belonging to the class rep-
resented by the data set, since the most sparse regions of the feature
space belonging to the class are left uncovered.

5 EXPERIMENTAL RESULTS

In this section, experiments involving the CPDD rule on three data
sets from the UCI Machine Learning Repository, namely Image seg-
mentation, Ionosphere, and Satellite image, are described.2 In par-
ticular, for the Image segmentation data set (19 attributes) the path
class (330 objects) was considered the normal one, while the remain-
ing 1,980 objects were considered anomalies, for the Ionosphere
data set (34 attributes) the good class (225 objects) was considered
the normal one, while the objects of the bad class were considered
anomalies, and for the Satellite image (36 attributes) the red soil class
(1,533 objects) was considered the normal one, while the remaining
3,902 objects were considered anomalies.

Figure 3 reports comparison of the CPDD and CNNDD (for r =
+∞) rules on the three considered data sets. The parameter k was
set to 4 in all the experiments, while the parameter θ was varied from
zero to a suitable large value, and, then, the size of the subset com-
puted, the false negative rate, and the true negative rate, were mea-
sured. If not otherwise specified, the parameters � and η are set to 1.
The Euclidean distance was employed as distance function d.

The True Positive Rate (TPR, for short) is the fraction of normal

2 Also other data set were considered: the behavior of the method on these
other data sets was analogous to what here described.

objects accepted by the classifier, while the False Positive Rate (FPR,
for short) is the fraction of abnormal objects accepted by the classi-
fier. Dually, the False Negative Rate (FNR, for short) is the fraction
of normal objects rejected by the classifier, while the True Negative
Rate (TNR, for short) is the fraction of abnormal objects rejected by
the classifier. It holds that FNR=1-TPR and FPR=1-TNR.

Figures 3(a)-(c) compare the ROC curves of the CPDD (solid
lines) and CNNDD (dash-dotted lines) methods and also the relative
size |S|/|D| of the corresponding consistent subsets S achieving the
same value of FNR. The ROC curve is the plot of the FNR versus
the TNR (or, correspondingly, TPR versus TNR), and the area under
the ROC curve (AUC, for short) provides a summary to compare two
classifiers. From these curves it is clear that the the CPDD consis-
tent subset (dashed lines) is much smaller than the CNNDD subset
(dotted lines) guaranteeing the same FNR. Moreover, the AUCs of
the two methods are very similar.

Figures 3(d)-(f) report the TNR (solid lines) ad FNR (dashed lines)
of the CPDD method, and the TNR (dash-dotted lines) and FNR
(dotted lines) of the CNNDD method as a function of the relative
subset size |S|/|D|. For the CPDD method the pair of parameters
� = 1, η = 0.95 (upper curve), � = 1, η = 1 (middle curve), and
� = 0.9, η = 1 (lower curve), were considered, in order to study
sensitivity to these parameters.

As far as the middle curves of the CPDD (� = 1, η = 1)
and the curves of the CNNDD is concerned, it can be noted that
for the same value of FNR or TNR the subset of the CPDD is
sensibly smaller than that of the CNNDD. As notable examples
(highlighted by means of big points on the curves) compare (1)
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Figure 4. Comparison between the CPDD rule and the one-class SVM.

the CPDD subset of relative size 0.054, achieving FNR=0.024
and TNR=0.997, with the CNNDD subset of relative size 0.158,
achieving FNR=0.027 and TNR=0.983, for the Image segmenta-
tion data set, (2) the CPDD subset of relative size 0.064, achiev-
ing FNR=0.031 and TNR=0.869, with the CNNDD subset of rela-
tive size 0.277, achieving FNR=0.045 and TNR=0.862, for the Iono-
sphere data set, and (3) the CPDD subset of relative size 0.042,
achieving FNR=0.041 and TNR=0.952, with the CNNDD subset of
relative size 0.106, achieving FNR=0.027 and TNR=0.943, for the
Satellite image data set.

As far as the upper curves of the CPDD is concerned (� = 1, η =
0.95), it can be noted that by decreasing the value of the parameter
η, very high values of TNR are obtained in correspondence of very
small subsets, but the associated FNR worsens with respect to the
case η = 1. This can be explained since the smaller the parameter
η, the greater the portion of the accepting region of the PDD rule
which is left uncovered by the CPDD consistent subset.

As far as the lower curves of the CPDD is concerned (� =
0.9, η = 1), on the contrary, it can be noted that by decreasing
the value of the parameter �, the FNR improves while the TNR gets
worse. This can be explained since the smaller the parameter �, the
greater, and also the closer to each other, the number of prototypes
composing the CPDD consistent subset.

Hence, by properly setting the parameters � and η the user can tune
the trade off between FNR and TNR and, simultaneously, between
subset size and accuracy. The following table summarizes the AUCs
of the CPDD for various combinations of the parameters � and η.

Data set � 1.00 1.00 0.90 0.90
η 1.00 0.95 1.00 0.95

Image segmentation 0.997 0.989 0.996 0.990
Ionosphere 0.970 0.956 0.972 0.967
Satellite image 0.986 0.981 0.989 0.987

Figure 4 compares the ROC curves of the CPDD method with that of
the one-class SVM classifier [10, 5]. As for the one-class SVM, the
radial basis function kernel was used, varying parameter γ between
10−4 and 102, and then the curve associated with the best AUC has
been selected. As for the CPDD rule, the parameter used were k =
4, � = 1, and η ∈ {0.95, 1.00}.

Interestingly, the CPDD performed better than the one-class SVM
both in terms of accuracy (AUCs of the two methods are reported in
figure) and in terms of size of the model. Indeed, as for the size of the
model is concerned, for small FNRs, the size of the CPDD subset
is practically identical to the number of support vectors, while, for
greater values of FNRs, the former number is much smaller than the

latter one. This can be explained by noticing that the CPDD sub-
set does not contain the reference set outliers, which form the great
majority of the reference set for large FNRs. Moreover, by setting
the parameter η to 0.95, the size of the CPDD subset is further de-
creased, while the accuracy of the CPDD classifier remained good,
as witnessed by the table above reported.

6 CONCLUSIONS AND FUTURE WORK

In this work the CPDD one-class classification algorithm has been
presented and compared with the CNNDD and the one-class SVM
classifiers, pointing out some advantages of the novel approach. A lot
of additional questions are worth of being considered. Among them,
studying the sensitivity of the method to the parameter k, compari-
son with the CNNDD rule under different metrics, comparison with
other one-class classification methods, and using kernel functions to
possibly improve size of the model and/or accuracy.
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[6] V. Chvátal, ‘A greedy heuristic for the set-covering problem’, Mathe-
matics of Operations Research, 4(3), 233–235, (1979).

[7] S. Floyd and M. Warmuth, ‘Sample compression, learnability, and the
vapnik-chervonenkis dimension’, Machine Learning, 21(3), 269–304,
(1995).

[8] M.R. Garey and D.S. Johnson, Computer and Intractability, W. H. Free-
man and Company, New York, 1979.

[9] P.E. Hart, ‘The condensed nearest neighbor rule’, IEEE Trans. on In-
formation Theory, 14, 515–516, (1968).

[10] B. Schlkopf, J.C. Platt, J. Shawe-Taylor, A.J. Smola, and R.C.
Williamson, ‘Estimating the support of a high-dimensional distribu-
tion’, Neural Computation, 13(7), 1443–1471, (2001).

[11] D.M.J. Tax, One-class classification, Ph.D. dissertation, Delft Univer-
sity of Technology, June 2001.

F. Angiulli / Prototype-Based Domain Description 111


