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Introduction
The composition of mathematical and technical material has traditionally

been considered “penalty copy”, because of both the large number of special sym-
bols required, and the complicated arrangement of these symbols on the page.
While careful exposition has always been a valued skill for the mathematician or
scientist, the tools were not available to allow authors to complete the presentation
until relatively recently. The machinery has now come together: a desktop or
portable computer; a text editor; an input language that is reasonably intuitive to
a scientific author; a composition program that “understands” what mathematical
notation is supposed to look like; a laser printer with a resolution high enough to
print even very small symbols clearly. The composition engine is TeX, by Donald
Knuth of Stanford University. This tool, originally developed specifically to pro-
duce the second edition of Knuth’s The Art of Computer Programming, Volume ,
has been adopted by mathematicians, physicists, and other scientists for their own
use. A number of scientific and technical publishers accept electronic manuscripts
prepared with TeX and insert them directly into their production flow, while other
publishers use TeX as a back end, continuing to accept and process copy in the tra-
ditional manner. TeX manuscripts are circulated in electronic form by their authors
in e-mail and posted into preprint archives on the World Wide Web; they are
portable and durable — a new edition of a work need not be typed from scratch,
but can be modified from the file of the previous edition. In short, the impact on
scientific authors is not just in the way their books and papers are published, but
in the way they work.

From hot metal to cold type
By the end of the ’s, the cost of composing technical material in the tra-

ditional manner was becoming insupportable for all but the most important or
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high-volume publications. “Cold type” was replacing Monotype for some journals
and books of transient importance, with a corresponding degradation of the per-
ceived professional quality of their appearance. The editorial model remained the
same, however: manuscripts prepared by (usually) the author’s secretary were rig-
orously copy-edited, then turned over to the compositor (who might be a skilled
typist working on a Varityper or IBM Selectric Composer) for conversion to cam-
era-ready copy. The machines used were similar to typewriters, but instead of keys,
they had interchangeable “fonts” and the spacing was defined in very small incre-
ments. In the case of a Varityper, two half-cylinders, each containing three rows of
characters in one typeface, were mounted on a head that could be pivoted to
change the style; the Selectric Composer used a separate “golf ball” for each type-
face. The resulting copy was proofread and errors lightly marked in non-reproduc-
ing blue pencil (these were the days before photocopiers); it was then returned to
the compositor for corrections. Typed copy was corrected by keying patches and
“cutting them in” — superimposing the correction over the erroneous original on
a light box, using a very sharp knife or razor blade to cut through the two layers,
and taping the good parts together with opaque tape; touchup with white paint was
often necessary so that the camera would not pick up shadows from the cuts.

Obviously, this was not something that an author would willingly undertake.

The rise of the computer
The American Mathematical Society (AMS) undertook some experiments in

the early ’s with highly stylized input prepared on paper tape according to a
mnemonic system in which mathematical notation and text were separated into
two “columns”: commands and mathematical notation at the beginning of the line,
and ordinary text following a tab character. The results, processed by a service
bureau, were adequate, but the process was cumbersome, and didn’t yield the
hoped-for level of cost savings.

Over the next decade, other organizations developed computer-based sys-
tems, several of which became commercial products. A compactly-coded input
scheme by Penta required dedicated hardware and highly trained keyboarders. A
system from Bedford used early CRTs and pointing devices to manually position
symbols; it too required dedicated hardware and skilled personnel, and according
to anecdotal reports, the same mathematical expression in two chapters of the same
book, prepared by two input technicians, might come out looking quite different
in the two places.

Other general-purpose typesetting programs such as RCA’s Page- and Page-
were becoming fairly widely used, but while they were quite good for ordinary
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prose and directories of various kinds, multi-level mathematics was quite beyond
their capability.

In the academic world, the program TROFF, developed at Bell Laboratories as
an adjunct to the UNIX operating system and the C programming language, was
gaining a devoted following. The licensing of this system was extremely generous
to academic users, requiring not much more than a token fee; however, the price
to non-academic organizations (which included the AMS) was quite steep. There-
fore, although TROFF and its companion equation processor, EQN, were very attrac-
tive, the financial implications were not.

The AMS had an opportunity to obtain the rights to a program by Science
Typographers (STI) that would run on a general-purpose computer (an IBM  or
clone). This system, like the Penta system, had rigidly coded input, but the ability
to use the computer for other business processes made the investment more accept-
able. An alternate input language was devised at AMS, based on the two-column
(mnemonic) system developed earlier; it was thought that potentially this form of
input might become usable by authors or their secretaries, and not require the
highly-trained keyboarders that were hitherto indispensible. Input was initially on
punched cards, with simulated distinctions between upper- and lowercase. Paper
tape and mini-barcode Selectric type balls were also used to some extent. Bulk out-
put was sent on magnetic tape to a service bureau for imaging on a VideoComp;
an alternate output path involved conversion to Photon  machine code, with
punched paper tape as the transfer medium. (Several acolytes of this system became
quite adept at repairing torn or mispunched paper tapes in emergencies.) The STI

program was used by AMS to prepare nearly all journals and many books from the
mid-’s through about .

The birth of TeX

In , the situation changed drastically. Donald Knuth, a computer scien-
tist teaching at Stanford University, was invited to deliver the Gibbs Lecture at the
annual meeting of the AMS. The lecturers for this series have been eminent scien-
tists who are often known for their use of mathematics in disciplines other than
mathematics; among the lecturers since the series began in  were Albert
Einstein, John von Neumann, Norbert Wiener and Paul Samuelson. The Gibbs
Lecturer’s topic is his or her own choice. Donald Knuth chose as his topic
“Mathematical Typography” — this was the public unveiling of TeX.

Knuth’s major published work is The Art of Computer Programming (TAOCP),
a deep and broad survey of programming techniques and algorithms, originally
intended to comprise seven volumes. However, by  (when three volumes were
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in print), the programming discipline had advanced with such great speed that
Knuth had to revise volume two. When he first looked at the galley proof for this
revision, he was appalled. Unlike the first edition of the first three volumes, which
had been typeset by Monotype, the revised volume two had been phototypeset. Not
only did it not look like the first edition, its quality was, to Knuth, unacceptable.

After recovering from the shock, Knuth thought about the problem, and
determined that he, as a computer scientist, should be able to use his computer to
do something about this. He realized that he would have to develop fonts as well
as the computer program, but figured that if he planned well, the project might
take him six months to a year.

Knuth had taken great interest in the typesetting of his books, and also in how
mathematical notation appears on the printed page. When he began to think about
assuming the responsibility for composing the new edition of TAOCP, he began to
look more closely at published literature, not only technical, but the products of
fine presses, to learn to recognize quality so that he could produce it.

Knuth began to think about his new program early in ; his journal for
May  shows two entries: “Read about Bell Labs typesetting system”, and “Major
design of TEX started” [, p. ]. By the middle of May, he had devised the prin-
cipal mechanism for placing type on pages, as well as the main features of the input
language he would like to use; he recorded his decisions in a long memo saved as a
computer file named “TEXDR.AFT” (because the computer he was using wouldn’t
allow it to be called “TEX.DRAFT”). As soon as he finished this memo, he went away
with his wife on a library associates’ tour of fine presses around Sacramento.
Throughout the development of TeX he continued his education in typography,
eventually working with several eminent type designers and typographers, and in
the process creating a computer typography group at Stanford that nurtured sever-
al members of the next generation of type designers.

The first iteration of TeX was written in the SAIL language, developed at the
Stanford Artificial Intelligence Laboratory. This language was specific to the main-
frame “edusystems” of Digital Equipment Corporation (DEC). These machines
were among the first timeshared systems, well suited to the needs of computer sci-
ence research and experimentation. Access to computer time was almost no prob-
lem, but to get the best response, Knuth shifted to “night phase” for a lot of his
work.

In his design of TeX, Knuth visualized an arrangement of boxes, containing
single characters or composed groups, and flexible glue, which joins boxes within
the framework of a page. At a low level, TeX manipulates these components accord-
ing to rules appropriate for text or for mathematical expressions, with reference to
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directives in the input file. The input vocabulary is mnemonic, with terminology
usually selected to be familiar to a mathematician. Further, TeX is designed as a
macro compiler, so it is possible to overlay the base commands with a different
vocabulary, providing more complex operations through a single instruction. The
most ambitious uses of this facility provide a user interface that consists entirely of
logical markup and “hides” the underlying composition commands.

In mid-May , Knuth left off work on TeX to develop the fonts that would
be needed to put TeX’s output onto paper.

Fonts for TeX

Stanford had an early laser printer, the Xerox XGP, with a resolution of about
 pixels per inch; Knuth realized that with this kind of digital device, he could
form fonts by treating each character as a matrix, filling in certain cells — pixels —
while leaving others empty. A page of a book would then become a gigantic bit
matrix.

The resolution of the XGP was not adequate, of course, to produce crisp
images, but when Knuth looked through a magnifying glass at a sample produced
on a high resolution machine (probably based on a cathode ray tube), he realized
that the application of ink during printing will smooth out the edges when the
raster is small enough. He observed that the critical density for ink smoothing was
probably somewhere between  and  pixels per inch [, p. ]; this value is
very close to the density at which the human eye can no longer distinguish small
irregularities.

It was important to Knuth to solve the problem of defining lettershapes in a
purely mathematical way, so that as the precision of raster devices increased, the
task of creating new fonts at higher resolutions did not have to begin again; the def-
inition of the lettershapes would stay the same in a machine-independent form.
The analogy he initially chose was to define the shape of a pen and describe in
terms of cubic splines the path that it should follow. These shapes are defined in
terms of parameters (such as pen dimensions and degree of slope) chosen by the
designer; alteration of the parameters results in changes to the lettershapes. The
first implementation of this program, Metafont, was usable early in .

After considerable experimentation, and consulting with professional font
designers, it became clear that the pen-path model was not how fonts were actual-
ly designed. Although type is based on writing, it is not the same, and a more sat-
isfactory model consists in defining the outlines of the glyphs and then filling them
in. The second version of Metafont adopts this model; released in , it has
remained unchanged since then except for a few bug fixes.
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Using Metafont, Knuth developed a comprehensive family of fonts, known as
Computer Modern, for use with TeX. In addition to alphabets in roman and italic
shapes, in all the common weights, with and without serifs, there are a number of
fonts devoted to symbols, so the collection of fonts is fully capable of handling
nearly all mathematical typesetting needs. And if on occasion a symbol is required
that doesn’t yet exist, an author or publisher can use Metafont to create it.

One of the main problems in a raster environment is to determine which pix-
els are to be turned on; with Metafont, the rasterization is fixed at the time the pro-
gram is run, and different renditions of a font are thus required for different out-
put devices. The space required for storage of these files can be substantial. This is
quite a different approach from the Type  (PostScript) and TrueType models, in
which an outline is presented to a rasterizer at the time the composed image is ren-
dered into output. These outlines are much more compact than Metafont raster
fonts, and TeX users expressed a desire to both save space and get access to the wider
variety of fonts available in outline formats. Since TeX itself requires only the font
metrics, to make outline fonts usable by TeX, it suffices to create metric files in the
required format and write suitable TeX-output-to-device programs to handle the
imaging.

The Computer Modern fonts have been re-implemented in Type  form, and,
at least in a publishing environment, TeX is now used almost exclusively with Type 
fonts.

The spread of TeX

We left TeX in mid-, still under construction. Knuth’s Gibbs Lecture in
 has already been mentioned. Reaction to this lecture, which introduced TeX

and Metafont to a mathematical audience, was more enthusiastic than Knuth had
expected. In particular, Richard Palais, then chairman of the AMS Board of Trustees,
recognized the potential of these tools to typeset AMS publications. He interpreted
their status as being ready for use, not still a research project. Arrangements were
made for a small group of mathematicians and AMS employees to spend the month
of July  at Stanford to learn TeX, “bring it back and make it work”. (These were
my marching orders as I was presented with plane tickets and a copy of the first TeX

manual.) Two members of this group were charged with developing TeX macro
code for processing various AMS publications including Mathematical Reviews. The
others were to create a package of macros suitable for use by authors, along with a
user manual; this became AMS-TeX.

As it turned out, there were still some serious gaps in TeX, which, up to that
time, had been designed for use by essentially one person, Knuth, to produce one
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particular, well-delineated series of books. As more people heard about TeX and
experimented with the original version, the gaps became known more clearly, and
many requests were communicated to Knuth for extensions and “improvements”.
Where such changes were justified by reference to well-documented examples, the
required functionality was usually provided. In a few instances, such as more flex-
ible handling of diacritics, Knuth rejected the requests, giving his reasons for doing
so; in the case of diacritics, he said that it would be more appropriate and robust
to provide fonts with already accented letters than to apply piece accents.

The first version of TeX ran on only one type of hardware — the DEC “edusys-
tems” for which it was written. It was, nonetheless, capable of typesetting the long-
delayed volume two of TAOCP, so this was done, and the second edition appeared
in January .

In order to make TeX available to a wider audience, it had to be modified for
other hardware and operating systems. A prototype was coded in Pascal, a pro-
gramming language popular at that time for instructing computer science students;
Knuth’s graduate students developed this version under his direction. At this point,
Knuth decided that he wanted TeX to be more than just a typesetting program; as
a committed teacher, he felt that it should also be a model of a large program that
would illustrate good programming techniques. To this end, Knuth devised yet
another concept, “literate programming”.

In using this technique, program code is interspersed with documentation, in
a sequence that is logical from the point of view of explaining what is going on.
The source file of a literate program can be processed in two ways: the documen-
tation can be stripped out and the code reorganized into the sequence required by
a compiler, or the entire file can be converted to a form that can be typeset by TeX.
With this tool, Knuth started again from the beginning, and recoded both TeX and
Metafont, taking care to use a “least common denominator” version of Pascal, to
ensure that the programs could be compiled and installed on any platform that
provided enough memory for the programs to run. This excluded a few smaller,
older machines, but most popular machines were soon able to boast a standard
implementation of TeX — not, however, before the compilation of TeX had flushed
out a few bugs in nearly every Pascal compiler. This version is known as TeX  or
TeX.

After refining the documentation, Knuth typeset the two programs; these
were published as two volumes of the series “Computers  Typesetting” (CT) —
TeX: The Program and Metafont: The Program. Of the former, one reviewer said that
it was the first program he had ever been able to curl up with by the fire and enjoy
reading it. These two volumes are fundamental illustrations of the “open source”

Developments in Technical Typesetting: TeX at the End of the th Century





concept in programming.
Three other volumes complete the CT series: two reference cum user manu-

als, The TeXbook and The Metafontbook; and Computer Modern Typefaces, a heavily
illustrated book describing the fonts that Knuth created and providing a practical
example of how Metafont might be used in practice. The five volumes were for-
mally released in  at a party held at the Computer Museum in Boston.

TeX became quite popular among mathematicians and scientists in the “hard”
sciences, who require considerable mathematical content in their papers and books.
It also acquired a substantial following among academics in Eastern Europe and
other areas of the world where economic conditions do not permit purchases of
expensive software. Two features are particularly attractive in this regard: first, TeX

can be obtained with almost no monetary outlay; second, if suitable fonts don’t
exist, a user can create them (this has been accomplished for Greek, cyrillic,
Amharic, and other scripts).

The heavy use of TeX in Europe made one limitation particularly onerous: TeX

wasn’t really designed to hyphenate words with accents and diacritics. In , a
delegation of TeX users from Europe approached Knuth at the annual TeX Users
Group meeting and explained to him that some changes were needed to permit
them to typeset their languages effectively. Although reluctant to make any more
changes to TeX, Knuth was persuaded by their arguments, and he provided some
major enhancements to support -bit input and effective hyphenation of languages
other then English. This version is known as TeX; after its release Knuth
announced that, for his part, “TeX is frozen”, and only the most egregious bugs
would be corrected thereafter.

Knuth’s custom has been to offer a reward (.) to readers of his books for
the first report of any error. In the case of TeX and Metafont, he also rewards the
finders of programming bugs; this reward was doubled annually through the release
of TeX, and then stabilized at .. Knuth now looks at bug reports only every
two to three years; only one or two major bugs have been reported during each of
the last few cycles.

TeX from an author’s point of view
Arguably the best thing about TeX for an author is that it gives documents a

professional typeset appearance.
Although becoming a skilled TeX user requires some effort, the ubiquity of

computers and the decrease in availability of secretarial support in many academic
departments provides incentive, especially for graduate students and younger fac-
ulty. For physics, perhaps even more than mathematics, the growth of preprint
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databases, such as the arXiv at Los Alamos (http://xxx.lanl.gov), is a further incen-
tive to master TeX (arXiv strongly prefers TeX submissions). For this use, TeX has
several advantages: the source is plain ASCII, so it will not become unusable with the
next release of the processing program; it is compact; it is freely available for all
popular platforms; it generates high-quality output; and it retains contextual infor-
mation, such as the relationship between equation numbers and cross references.

There are some other advantages for authors. TeX’s vocabulary and syntax for
mathematical notation is straightforward; it is nearly equivalent to the descriptive
language that two mathematicians might use when communicating by telephone.
This notation is also known to several important symbolic algebra programs, which
are able to generate output in TeX form for direct use by an author. An author who
is fluent in the TeX mathematics notation can combine all these tools to record an
idea as it develops; it has been reported that this capability has radically changed
the way that some mathematicians work.

Some authors prefer a “point and click” or WYSIWYG approach to input. Even
if they agree that the results from using TeX are superior to those from word proces-
sors, they still struggle with the learning curve. For such people, tools have been
developed to provide menus and on-screen formatting of mathematical expres-
sions, with TeX code stored behind the scenes.

The situation is not so clear with respect to the document structure. “Plain”
TeX is a low-level typesetting language, and with it, one can obtain almost any
desired result. Although several highly functional front-end interfaces have been
created, some authors still prefer to use raw typesetting commands. On the other
hand, for a publisher, especially a publisher trying to compile journals out of sub-
missions from multiple sources, article sources prepared using uniform structural
markup is essential. Some authors can’t be bothered with such “petty” concerns,
but more and more publishers are using the reward of more rapid publication
when a submission conforms to the rules, along with the threat of retyping a sub-
mission, slowing down its production and incurring the possibility of new typo-
graphical errors, for submissions that cannot be inserted smoothly into the nor-
mal production flow. It is still a challenge to get all authors to actually read
instructions.

TeX from a publisher’s point of view
For most publishers, the TeX flavor of choice is LaTeX. This macro collection

provides a user interface that defines logical structural markup for the top matter
and sectioning elements of a document, and supports automatic numbering, cross-
referencing, and interaction with standard tools for compiling bibliographies and
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indexes.
While not as rigorous as SGML or XML, the LaTeX framework is reliable and

permits authors to produce a well-structured document onto which a publisher can
superimpose a house style. There are a few rough edges, however; the handling of
author addresses in basic LaTeX, for example, does not conform to the style of some
publishers, and in extending this area, different publishers have made some mutu-
ally incompatible decisions. Nonetheless, there is a common, dependable core, and
public-spirited users have made extension packages for many desirable features,
usually (if not always) doing their best to ensure inter-compatibility with other
commonly used packages.

What (La)TeX doesn’t provide is rigor. SGML and XML documents are required
both to be well-formed and (at least for SGML) to conform to a DTD. There is no
such requirement for (La)TeX documents, and authors are free to ignore the con-
ventions of a document style if they so choose; TeX is quite forgiving in processing
a mixture of logical markup and physical typesetting commands, as long as they
properly reduce to TeX’s somewhat arcane syntax rules. The disadvantage in this is
that transformation other than by TeX for presentation in modes other than on
paper (e.g., in HTML, or via audio) becomes quite difficult, and in some circum-
stances nearly impossible.

There are nonetheless some things that a publisher can do to increase the like-
lihood that a TeX manuscript submitted by an author can be processed with high
reliability and minimal special handling. () Provide well-designed “author pack-
ages” and easy-to-follow instructions. () Make sure that the fonts the author is
using are fully compatible with the ones used in-house. () Provide at least intro-
ductory TeX training to all production staff handling TeX submissions, and have at
least one person with solid TeX expertise on staff to answer questions from authors
and production staff; don’t try to rely entirely on outside consultants. Of course,
this changes the nature of the production environment, but that has changed
already, and no traditional technical publisher would forgo thorough training in
house style and copy-editing techniques; only the tools are different.

There is one more danger in using TeX. There are very few symbol fonts avail-
able, and few authors are likely to be willing to purchase new ones when a reason-
able set is available for free. This limits the choice of text fonts unless the publish-
er is willing to do extra work to recheck line breaks and similar features which are
particularly suscriptible to font changes. The document styles that come with
LaTeX are very recognizable, as are the fonts. A publisher is advised to invest in
some expert design effort to create styles with a distinctive look, yet are still com-
patible with what the author is using.
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The future
Many technical journals and some books are now published in electronic

form as well as, or even instead of, on paper. The style suitable for paper is often
not best for reading on a screen. Even if pages are put online as PDF files, the capa-
bilities of an online environment — an active contents list, links to internal cross-
references, etc. — should be incorporated into a document. For certain kinds of
documents, particularly instructional ones, a different design is desirable, one that
presents material in small chunks, not all at once.

Math has always been a niche market, and future developments are likely to
come, as TeX has, from a self-interested source. TeX users — both authors and pub-
lishers — want to participate in the electronic revolution, and that will take a while
to become routine. The major problem is the absence of suitable fonts. A two-
pronged effort undertaken by STIPub, a consortium of scientific societies and pub-
lishers, is now addressing this gap. One part of this project is directed at Unicode,
to increase the population of symbols with standard Unicodes; the other is to cre-
ate a font containing these symbols and make it freely available to any and all users
of the Web.

As noted earlier, the variability of a (La)TeX file means it is not ideal for repur-
posing. For this, XML and SGML are superior. MathML, an XML application that
defines a structure for expressing math  formulas in a Web-compatible manner, is
now an accepted recommendation of the World Wide Web Consortium. However,
TeX is much less verbose and more easily handled by a human than any of these
*MLs. For an author to switch from TeX, some very capable input tools will have to
become available; authors, having caught the TeX habit, are not going to give up
without a struggle. In the long run, an internal *ML format for archiving will prob-
ably become the norm, with translation by various tools to formats suitable for pre-
sentation in different media. The development of such tools is proceeding slowly.
Like TeX, which took ten years rather than the originally envisioned six months,
they will arrive, but not as soon as one hopes.

TeX is no longer novel, but it is still one of the most reliable and flexible type-
setting programs available, and one of very few that is capable of producing publi-
cation-quality math. Stability is a virtue in this context. However, some missing
features would make it even more valuable, especially to users working in languages
other than English. Several projects are underway that will extend TeX to provide
such features. PdfTeX has added a few features that are directed at hypertext and on-
line presentation, and outputs PDF files directly. E-TeX has incorporated into the
present TeX program some new elements such as right-to-left typesetting. NTS (a
“new typesetting system”) is re-implementing TeX in a “more modern” program-
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ming language (Java, at last report) and then making additions. Omega uses
Unicode for its input character set, and provides a number of filters to handle the
special requirements of non-Western scripts. It remains to be seen which of these
projects might result in a system that develops a critical mass of users to supersede
TeX itself.

None of these TeX extensions directly addresses the special needs of flexible
Web presentation. That will more likely be handled by some new internal format,
like MathML.

In more mainstream developments, some of TeX’s key ideas have been adopt-
ed for incorporation into new products. For example, TeX’s line- and paragraph-
breaking algorithm is now in Adobe’s InDesign, by way of the hz program by Peter
Karow and Hermann Zapf; however, this does not, and probably will never, han-
dle math. Typesetting of math is too small an area, and much too demanding, for
any of the major software houses to want to join in. There simply isn’t any possi-
bility of large profits, especially since a free alternative is available.

Where will math publishing be in twenty years? That is hard to predict. The
only thing certain is that mathematicians and scientists will continue to have some-
thing to say to one another, and will demand that it be presented clearly and accu-
rately.
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