As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Effectively identifying deviations in real-world medical time-series data is a critical endeavor, essential for early surveillance of disease outbreaks. This paper demonstrates the integration of time-series anomaly detection techniques to develop surveillance systems for disease outbreaks. Utilizing data from Sweden’s telephone counseling service (1177), we first illustrate the trends in physical and mental symptoms recorded as contact reasons, offering valuable insights for outbreak detection. Subsequently, an advanced anomaly detection technique is applied incrementally to these time-series symptoms as univariate and multivariate approaches to assess the effectiveness of a machine learning-based method on early detection of the COVID-19 outbreak.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.