As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In our recent research, we have effectively demonstrated the feasibility of classifying magnetic resonance images (MRI) of glial tumors into four histological types utilizing standardized volume of interest (VOI), radiomics and machine learning. This research aims to determine the reproducibility of our approach when the locations of VOI are changed. We were able to demonstrate high reproducibility of ML results when the same feature selection methodology was employed across different VOIs. However, the reproducibility of radiomic features and their sets among various VOIs was not ensured for the sample size (n = 85) studied. The limited reproducibility of radiomic features should be taken into account when evaluating radiomics studies in glial tumors.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.