As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
White blood cell classification plays a key role in the diagnosis of hematologic diseases. Models can perform classification either from images or based on morphological features. Image-based classification generally yields higher performance, but feature-based classification is more interpretable for clinicians. In this study, we employed a Multimodal neural network to classify white blood cells, utilizing a combination of images and morphological features. We compared this approach with image-only and feature-only training. While the highest performance was achieved with image-only training, the Multimodal model provided enhanced interpretability by the computation of SHAP values, and revealed crucial morphological features for biological characterization of the cells.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.