As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Digital individual participant data (IPD) from clinical trials are increasingly distributed for potential scientific reuse. The identification of available IPD, however, requires interpretations of textual data-sharing statements (DSS) in large databases. Recent advancements in computational linguistics include pre-trained language models that promise to simplify the implementation of effective classifiers based on textual inputs. In a subset of 5,000 textual DSS from ClinicalTrials.gov, we evaluate how well classifiers based on domain-specific pre-trained language models reproduce original availability categories as well as manually annotated labels. Typical metrics indicate that classifiers that predicted manual annotations outperformed those that learned to output the original availability categories. This suggests that the textual DSS descriptions contain applicable information that the availability categories do not, and that such classifiers could thus aid the automatic identification of available IPD in large trial databases.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.