As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
To address the persistent challenges in healthcare, it is crucial to incorporate firsthand experiences and perspectives from stakeholders such as patients and healthcare professionals. However, the current process of collecting, analyzing and interpreting qualitative data, such as interviews, is slow and labor-intensive. To expedite this process and enhance efficiency, automated approaches aim to extract meaningful themes and accelerate interpretation, but current approaches such as topic modeling reduce the richness of the raw data. Here, we evaluate whether Large Language Models can be used to support the semi-automated interpretation of qualitative interview data. We compare a novel approach based on LLMs to topic modeling approaches and to manually identified themes across two different qualitative interview datasets. This exploratory study finds that LLMs have the potential to support incorporating human perspectives more widely in the advancement of sustainable healthcare systems.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.