As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Annotated language resources derived from clinical routine documentation form an intriguing asset for secondary use case scenarios. In this investigation, we report on how such a resource can be leveraged to identify additional term candidates for a chosen set of ICD-10 codes. We conducted a log-likelihood analysis, considering the co-occurrence of approximately 1.9 million de-identified ICD-10 codes alongside corresponding brief textual entries from problem lists in German. This analysis aimed to identify potential candidates with statistical significance set at p < 0.01, which were used as seed terms to harvest additional candidates by interfacing to a large language model in a second step. The proposed approach can identify additional term candidates at suitable performance values: hypernyms MAP@5=0.801, synonyms MAP@5 = 0.723 and hyponyms MAP@5 = 0.507. The re-use of existing annotated clinical datasets, in combination with large language models, presents an interesting strategy to bridge the lexical gap in standardized clinical terminologies and real-world jargon.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.