As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
With cancer being a leading cause of death globally, epidemiological and clinical cancer registration is paramount for enhancing oncological care and facilitating scientific research. However, the heterogeneous landscape of medical data presents significant challenges to the current manual process of tumor documentation. This paper explores the potential of Large Language Models (LLMs) for transforming unstructured medical reports into the structured format mandated by the German Basic Oncology Dataset. Our findings indicate that integrating LLMs into existing hospital data management systems or cancer registries can significantly enhance the quality and completeness of cancer data collection - a vital component for diagnosing and treating cancer and improving the effectiveness and benefits of therapies. This work contributes to the broader discussion on the potential of artificial intelligence or LLMs to revolutionize medical data processing and reporting in general and cancer care in particular.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.