As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Defacing of brain magnetic resonance imaging (MRI) scans is a crucial process in medical imaging research aimed at preserving patient privacy while maintaining data integrity. However, existing defacing algorithms are prone to errors, potentially compromising patient anonymity. This paper investigates the feasibility and efficacy of automated quality assessment for defaced brain MRIs using machine learning (ML). Our findings demonstrate the promising capability of ML models in accurately distinguishing between properly and inadequately defaced MRI scans.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.