As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper explores the critical role of Interoperability (IOP) in the integration of Artificial Intelligence (AI) for clinical applications. As AI gains prominence in medical analytics, its application in clinical practice faces challenges due to the lack of standardization in the medical sector. IOP, the ability of systems to exchange information seamlessly, emerges as a fundamental solution. Our paper discusses the indispensable nature of IOP throughout the Data Life Cycle, demonstrating how interoperable data can facilitate AI applications. The benefits of IOP encompass streamlined data entry for healthcare professionals, efficient data processing, enabling the sharing of data and algorithms for replication, and potentially increasing the significance of results obtained by medical data analytics via AI. Despite the challenges of IOP, its successful implementation promises substantial benefits for integrating AI into clinical practice, which could ultimately enhance patient outcomes and healthcare quality.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.