As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Systematic review and meta-analysis constitute a staple of evidence-based medicine, an obligatory step in developing the guideline and recommendation document. It is a formalized process aiming at extracting and summarizing knowledge from the published work, grading, and considering the quality of the included studies. It is very laborious and time-consuming. Therefore, the meta-analyses are rarely updated and seldom living, decreasing their utility with time. Here, we present a framework for integrating the large language models and natural language processing techniques applied to the previously published systematic review and meta-analysis of the diagnostic test accuracy of the point of care tests. We show that the framework can be used to automate the screening step of the existing meta-analyses with minimal costs to quality and, to a large extent, the extraction step while maintaining the strict nature of the systematic review process.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.