As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
There is a rapid growth in the volume of data in the cancer field and fine-grained classification is in high demand especially for interdisciplinary and collaborative research. There is thus a need to establish a multi-label classifier with higher resolution to reduce the burden of screening articles for clinical relevance. This research trains a multi-label classifier with scalability for classifying literature on cancer research directly at the publication level. Firstly, a corpus was divided into a training set and a testing set at a ratio of 7:3. Secondly, we compared the performance of classifiers developed by “PubMedBERT + TextRNN” and “BioBERT + TextRNN” with ICRP CT. Finally, the classifier was obtained based on the optimal combination “PubMedBERT + TextRNN”, with P= 0.952014, R=0.936696, F1=0.931664. The quantitative comparisons demonstrate that the resulting classifier is fit for high-resolution classification of cancer literature at the publication level to support accurate retrieving and academic statistics.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.