As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Patients with low bone mineral density (BMD) face an increased risk of fractures, yet are frequently undiagnosed. Consequently, it is imperative to have opportunistically screen for low BMD in patients undergoing other medical evaluations. This retrospective study encompassed 422 patients aged ≥ 50 who underwent both dual-energy X-ray absorptiometry (DXA) and hand radiographs (modality of digital X-ray) from three different vendors within a 12-month period. The dataset was randomly divided into training/validation (n=338) and test (n=84) datasets. we sought to predict osteoporosis/osteopenia and establish correlations between bone textural analysis and DXA measurements. Our results demonstrate that the deep learning model achieved an accuracy of 77.38%, sensitivity of 77.38%, specificity of 73.63%, and an area under the curve (AUC) of 83% in detecting osteoporosis/osteopenia. These findings suggest that hand radiographs can serve as a viable screening tool for identifying individuals warranting formal DXA assessment for osteoporosis/osteopenia.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.