As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
To systematically and comprehensively identify data issues in large clinical datasets, we adopted a harmonized data quality assessment framework with Python scripts before integrating the data into FHIR® for secondary use. We also added a preliminary step of categorizing data fields within the database scheme to facilitate the implementation of the data quality framework. As a result, we demonstrated the efficiency and comprehensiveness of detecting data issues using the framework. In future steps, we plan to continually utilize the framework to identify data issues and develop strategies for improving our data quality.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.