As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This study aimed to develop ICU mortality prediction models using a conceptual framework, focusing on nurses’ concerns reflected in nursing records from the MIMIC IV database. We included 46,693 first-time ICU admissions of adults over 18 years with a minimum 24-hour stay, excluding those receiving hospice or palliative care. Predictors included demographics, clinical characteristics, and nursing documentation frequencies related to nurses’ concerns. Four models were trained with 10-fold cross-validation after adjusting class imbalance. The random forest (RF) model was identified as the best-performing, with key predictors of mortality in this model being the frequency of vital signs, the frequency of nursing note documentation, and the frequency of monitoring-related nursing notes. This suggests that predictive models using nursing records, which reflect nurses’ concerns as represented by the frequency of nursing documentation, may be integrated into clinical decision support tools, potentially enhancing patient outcomes in ICUs.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.