As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper aims to propose an approach leveraging Artificial Intelligence (AI) to diagnose thalassemia through medical imaging. The idea is to employ a U-net neural network architecture for precise erythrocyte morphology detection and classification in thalassemia diagnosis. This accomplishment was realized by developing and assessing a supervised semantic segmentation model of blood smear images, coupled with the deployment of various data engineering techniques. This methodology enables new applications in tailored medical interventions and contributes to the evolution of AI within precision healthcare, establishing new benchmarks in personalized treatment planning and disease management.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.