As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Clinical text contains rich patient information and has attracted much research interest in applying Natural Language Processing (NLP) tools to model it. In this study, we quantified and analyzed the textual characteristics of five common clinical note types using multiple measurements, including lexical-level features, semantic content, and grammaticality. We found there exist significant linguistic variations in different clinical note types, while some types tend to be more similar than others.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.