As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this paper, we address the related tasks of medication extraction, event classification, and context classification from clinical text. The data for the tasks were obtained from the National Natural Language Processing (NLP) Clinical Challenges (n2c2) Track 1. We developed a named entity recognition (NER) model based on BioClinicalBERT and applied a dictionary-based fuzzy matching mechanism to identify the medication mentions in clinical notes. We developed a unified model architecture for event classification and context classification. The model used two pre-trained models—BioClinicalBERT and RoBERTa to predict the class, separately. Additionally, we applied an ensemble mechanism to combine the predictions of BioClinicalBERT and RoBERTa. For event classification, our best model achieved 0.926 micro-averaged F1-score, 5% higher than the baseline model. The shared task released the data in different stages during the evaluation phase. Our system consistently ranked among the top 10 for Releases 1 and 2.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.