As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
We document the procedure and performance of a rule-based NLP system that, using transfer learning, automatically extracts essential named entities related to drug errors from Japanese free-text incident reports. Subsequently, we used the rule-based annotated data to fine-tune a pre-trained BERT model and examined the performance of medication-related incident report prediction. The rule-based pipeline achieved a macro-F1-score of 0.81 in an internal dataset and the BERT model fine-tuned with rule-annotated data achieved a macro-F1-score of 0.97 and 0.75 for named entity recognition and relation extraction tasks, respectively. The model can be deployed to other, similar problems in medication-related clinical texts.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.