As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Clinical narratives recording behaviours and emotions of patients are available from EHRs in a forensic psychiatric centre located in Tasmania. This rich data has not been used in risk prediction. Prior work demonstrates natural language processing can be used to identify patient symptoms in these free-text records and can then be used to predict risk. Four dictionaries containing descriptive words of harm were created using the Diagnostic and Statistical Manual of Mental Disorders, the Unified Medical Language System repository, English negative and positive sentiment words, and high-frequency words from the Corpus of Contemporary American English. However, a model based only on these keywords is limited in predictive power. In this study, we introduce an improved NLP approach with a social interaction component to extract additional information about the behavioural and emotional state of patients. These social interactions are subsequently used in a machine-learning model to enhance risk prediction performance.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.