As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Important pieces of information related to patient symptoms and diagnosis are often written in free-text form in clinical texts. To utilize these texts, information extraction using natural language processing is required. This study evaluated the performance of named entity recognition (NER) and relation extraction (RE) using machine-learning methods. The Japanese case report corpus was used for this study, which had 113 types of entities and 36 types of relations that were manually annotated. There were 183 cases comprising 2,194 sentences after preprocessing. In addition, a machine learning model based on bidirectional encoder representations from transformers was used. The results revealed that the maximum micro-averaged F1 scores of NER and RE were 0.912 and 0.759, respectively. The results of this study are comparable to those of previous studies. Hence, these results could be of substantial baseline accuracy.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.