As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Adverse event (AE) management is crucial to improve anti-cancer treatment outcomes, but it is reported that some AE signals can be missed in clinical visits. Thus, monitoring AE signals seamlessly, including events outside hospitals, would be helpful for early intervention. Here we investigated how to detect AE signals from texts written by cancer patients themselves by developing deep-learning (DL) models to classify posts mentioning AEs according to severity grade, in order to focus on those that might need immediate treatment interventions. Using patient blogs written in Japanese by cancer patients as a data source, we built DL models based on three approaches, BERT, ELECTRA, and T5. Among these models, T5 showed the best F1 scores for both Grade ≥ 1 and ≥ 2 article classification tasks (0.85 and 0.53, respectively). This model might benefit patients by enabling earlier AE signal detection, thereby improving quality of life.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.