As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Recurrent AKI has been found common among hospitalized patients after discharge, and early prediction may allow timely intervention and optimized post-discharge treatment [1]. There are significant gaps in the literature regarding the risk prediction on the post-AKI population, and most current works only included a limited number of pre-selected variables [2]. In this study, we built and compared machine learning models using both knowledge-based and data-driven features in predicting the risk of recurrent AKI within 1-year of discharge. Our results showed that the additional use of data-driven features statistically improved the model performances, with best AUC=0.766 by using logistic regression.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.