As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Overcrowding in EDs has been viewed globally as a chronic health challenge. It is directly related to the increased use of EDs for non-urgent issues, leading to increased complications, long waiting times, a higher death rate, or delayed intervention of those more acutely ill. This study aims to develop Machine Learning models to differentiate immediate medical needs from unnecessary ED visits. A Decision Tree, Random Forest, AdaBoost, and XGBoost models were built and evaluated on real-life data. XGBoost achieved the best accuracy and F1-score.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.