As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The task of automatically analyzing the textual content of documents faces a number of challenges in general but even more so when dealing with the medical domain. Here, we can’t normally rely on specifically pre-trained NLP models or even, due to data privacy reasons, (massive) amounts of training material to generate said models. We, therefore, propose a method that utilizes general-purpose basic text analysis components and state-of-the-art transformer models to represent a corpus of documents as multiple graphs, wherein important conceptually related phrases from documents constitute the nodes and their semantic relation form the edges. This method could serve as a basis for several explorative procedures and is able to draw on a plethora of publicly available resources. We test it by comparing the effectiveness of these so-called Concept Graphs with another recently suggested approach for a common use case in information retrieval, document clustering.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.