As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Opioid addiction is a serious public health problem in the US, and this study aimed to explore how natural language processing (NLP) can be used to identify factors that contribute to distress in individuals with opioid addiction, and then use this information along with structured data to predict the outcome of opioid treatment programs (OTP). The study analyzed medical records data and clinical notes of 1,364 patients, out of which 136 succeeded in the program and 1,228 failed. The results showed that several factors influenced the success of patients in the program, including sex, race, education, employment, secondary substance, tobacco use, and type of residences. XGBoost with down sampling was the best model. The accuracy of the model was 0.71 and the AUC score was 0.64. The study highlights the importance of using both structured and unstructured data to evaluate the effectiveness of OTP.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.