As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Although various clinical factors affect the diagnosis of Non-alcoholic Fatty Liver Disease (NAFLD), most studies only use single-source data such as images or laboratory data. Nevertheless, using different categories of features can help to get better results. Hence, one of the most important purposes of this paper is to employ a multi-group of effective factors such as velocimetry, psychological, demographic and anthropometric, and lab test data. Then, some Machine Learning (ML) methods are applied to classify the samples into two healthy and patient with NAFLD groups. The data used here belongs to the PERSIAN Organizational Cohort study at Mashhad University of Medical Sciences. To quantify the scalability of the models, different validity metrics are used. The obtained results illustrate that the proposed method can lead to an increase in the efficiency of the classifiers.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.