As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The proliferation of health misinformation in recent years has prompted the development of various methods for detecting and combatting this issue. This review aims to provide an overview of the implementation strategies and characteristics of publicly available datasets that can be used for health misinformation detection. Since 2020, a large number of such datasets have emerged, half of which are focused on COVID-19. Most of the datasets are based on fact-checkable websites, while only a few are annotated by experts. Furthermore, some datasets provide additional information such as social engagement and explanations, which can be utilized to study the spread of misinformation. Overall, these datasets offer a valuable resource for researchers working to combat the spread and consequences of health misinformation.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.