As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Deep learning models for radiology are typically deployed either through cloud-based platforms, through on-premises infrastructures, or though heavyweight viewers. This tends to restrict the audience of deep learning models to radiologists working in state-of-the-art hospitals, which raises concerns about the democratization of deep learning for medical imaging, most notably in the context of research and education. We show that complex deep learning models can be applied directly inside Web browsers, without resorting to any external computation infrastructure, and we release our code as free and open-source software. This opens the path to the use of teleradiology solutions as an effective way to distribute, teach, and evaluate deep learning architectures.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.