As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents the results of a study performed on Parallel Convolutional Neural Network (PCNN) toward detecting heart abnormalities from the heart sound signals. The PCNN preserves dynamic contents of the signal in a parallel combination of the recurrent neural network and a Convolutional Neural Network (CNN). The performance of the PCNN is evaluated and compared to the one obtained from a Serial form of the Convolutional Neural Network (SCNN) as well as two other baseline studies: a Long- and Short-Term Memory (LSTM) neural network and a Conventional CNN (CCNN). We employed a well-known public dataset of heart sound signals: the Physionet heart sound. The accuracy of the PCNN, was estimated to be 87.2% which outperforms the rest of the three methods: the SCNN, the LSTM, and the CCNN by 12%, 7%, and 0.5%, respectively. The resulting method can be easily implemented in an Internet of Things platform to be employed as a decision support system for the screening heart abnormalities.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.