As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Contextualized word embeddings proved to be highly successful quantitative representations of words that allow to efficiently solve various tasks such as clinical entity normalization in unstructured texts. In this paper, we investigate how the Saussurean sign theory can be used as a qualitative explainable AI method for word embeddings. Our assumption is that the main goal of XAI is to produce confidence and/or trust, which can be gained through quantitative as well as quantitative approaches. One important result is related to the fact that the differential structure of language as explained by Saussure corresponds to the possibility of adding and subtracting word embeddings. On the other hand, these mathematical structures provide insights into the inner workings of natural language.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.