As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Patient reported outcomes have been shown to be predictive of cancer patients’ prognosis, and their monitoring through electronic applications have been shown to positively impact survival. On the other hand, patient apps in general show a number of criticalities that often lead patients to abandon their use. One of them is usability. A scarce attention to usability during app development leads to unsatisfactory user experience. In this work, we present an algorithm to facilitate patient symptoms reporting, by personalising the list of symptoms according to their probability of occurrence in the specific patient. This avoids searching long lists of items, thus decreasing the patients’ burden in symptom reporting.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.