As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Methods of natural language processing associated with machine learning or deep learning can support detection of adverse drug reactions in abstracts of case reports available on Pubmed. In 2012, Gurulingappa et al. proposed a training set for the recognition of named entities corresponding to drugs and adverse reactions on 3000 Pubmed abstracts. We implemented a classifier using deep learning with a Bi-LSTM and a CRF layer that achieves an F-measure of 87.8%. Perspectives consist in using BERT for improving the classifier, and applying it to a large number of Pubmed abstract to build a database of case reports available in the literature.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.