As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The present study shows first attempts to automatically classify oncology treatment responses on the basis of the textual conclusion sections of radiology reports according to the RECIST classification. After a robust and extended manual annotation of 543 conclusion sections (5-to-50-word long), and after the training of several machine learning techniques (from traditional machine learning to deep learning), the best results show an accuracy score of 0.90 for a two-class classification (non-progressive vs. progressive disease) and of 0.82 for a four-class classification (complete response, partial response, stable disease, progressive disease) both with Logistic Regression approach. Some innovative solutions are further suggested to improve these scores in the future.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.