As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
This paper presents a Support-Vector Machine (SVM) based method of classification of cross-correlated phoneme segments as part of the development of an automated Speech Sound Disorder (SSD) Screening tool. The pre-processing stage of the algorithm uses cross-correlation to segment the target phoneme and extracts data from the new homogeneously trimmed audio samples. Such data is then fed into the SVM-based classification script which currently achieves an accuracy of 97.5% on a dataset of 132 rows. Given the global context of an increasing trend in the incidence of Speech Sound Disorders (SSDs) amongst early-school aged children (5–6 years old), the constraints imposed by the new Corona virus pandemic, and the (consequent) shortage of professionally trained specialists, an automated screening tool would be of much assistance to Speech-Language Pathologists (SLPs).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.