As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Endometrial thickness in assisted reproductive techniques is one of the essential factors in the success of pregnancy. Despite extensive studies on endometrial thickness prediction, research is still needed. We aimed to analyze the impact of endometrial thickness on the ongoing pregnancy rate in couples with unexplained infertility. A total of 729 couples with unexplained infertility were included in this study. A random forest model (RFM) and logistic regression (LRM) were used to predict pregnancy. Evaluation of the performance of RFM and LRM was based on classification criteria and ROC curve, Odd Ratio for ongoing Pregnancy by EMT categorized. The results showed that RFM outperformed the LRM in IVF/ICSI and IUI treatments, obtaining the highest accuracy. We obtained a 7.7mm cut-off point for IUI and 9.99 mm for IVF/ICSI treatment. The results showed machine learning is a valuable tool in predicting ongoing pregnancy and is trustable via multicenter data for two treatments. In addition, Endometrial thickness was not statistically significantly different from CPR and FHR in both treatments.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.