As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Patients at risk of developing a disease have to be identified at an early stage to enable prevention. One way of early detection is the use of machine learning based prediction models trained on electronic health records.
Objectives:
The aim of this project was to develop a software solution to predict cardiovascular and nephrological events using machine learning models. In addition, a risk verification interface for health care professionals was established.
Methods:
In order to meet the requirements, different tools were analysed. Based on this, a software architecture was created, which was designed to be as modular as possible.
Results:
A software was realised that is able to automatically calculate and display risks using machine learning models. Furthermore, predictions can be verified via an interface adapted to the need of health care professionals, which shows data required for prediction.
Conclusion:
Due to the modularised software architecture and the status-based calculation process, different technologies could be applied. This facilitates the installation of the software at multiple health care providers, for which adjustments need to be carried out at one part of the software only.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.