As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Psychosocial factors are known to have adverse health impacts, but are rarely measured; using natural language processing, we extracted factors that identified a higher risk segment of older adults with multimorbidity. We find these extracted features are highly predictive of future emergency department visits and hospitalizations, although only marginal prediction gains are seen compared to other models without these factors. Combining these extraction techniques with other measures of social determinants may help catalyze population health efforts to mitigate these health impacts.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.