As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Machine learning models are often trained on sociodemographic features to predict mental health outcomes. Biases in the collection of race-related data can limit the development of useful and fair models. To assess the current state of this data in mental health research, we conducted a rapid review guided by Critical Race Theory. Findings reveal limitations in the measurement and reporting of race and ethnicity, potentially leading to models that amplify health inequities.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.