As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Towards Automated Screening of Literature on Artificial Intelligence in Nursing
Authors
Hans Moen, Dari Alhuwail, Jari Björne, Lori Block, Sven Celin, Eunjoo Jeon, Karl Kreiner, James Mitchell, Gabriela Ožegović, Charlene Esteban Ronquillo, Lydia Sequeira, Jude Tayaben, Maxim Topaz, Sai Pavan Kumar Veeranki, Laura-Maria Peltonen
We evaluate the performance of multiple text classification methods used to automate the screening of article abstracts in terms of their relevance to a topic of interest. The aim is to develop a system that can be first trained on a set of manually screened article abstracts before using it to identify additional articles on the same topic. Here the focus is on articles related to the topic “artificial intelligence in nursing”. Eight text classification methods are tested, as well as two simple ensemble systems. The results indicate that it is feasible to use text classification technology to support the manual screening process of article abstracts when conducting a literature review. The best results are achieved by an ensemble system, which achieves a F1-score of 0.41, with a sensitivity of 0.54 and a specificity of 0.96. Future work directions are discussed.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.