As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Sample size is an important indicator of the power of randomized controlled trials (RCTs). In this paper, we designed a total sample size extractor using a combination of syntactic and machine learning methods, and evaluated it on 300 Covid-19 abstracts (Covid-Set) and 100 generic RCT abstracts (General-Set). To improve the performance, we applied transfer learning from a large public corpus of annotated abstracts. We achieved an average F1 score of 0.73 on the Covid-Set testing set, and 0.60 on the General-Set using exact matches. The F1 scores for loose matches on both datasets were over 0.74. Compared with the state-of-the-art tool, our extractor reports total sample sizes directly and improved F1 scores by at least 4% without transfer learning. We demonstrated that transfer learning improved the sample size extraction accuracy and minimized human labor on annotations.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.