As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
The diabetic foot ulcer, which 2% – 6% of diabetes patients experience, is a severe health threat. It is closely linked to the risk of lower extremity amputation (LEA). When a DFU is present, the chief imperative is to initiate tertiary preventive actions to avoid amputation. In this light, clinical decision support systems (CDSS) can guide clinicians to identify DFU patients early. In this study, the PEDIS classification and a Bayesian logistic regression model are utilised to develop and evaluate a decision method for patient stratification. Therefore, we conducted a Bayesian cutpoint analysis. The CDSS revealed an optimal cutpoint for the amputation risk of 0.28. Sensitivity and specificity were 0.83 and 0.66. These results show that although the specificity is low, the decision method includes most actual patients at risk, which is a desirable feature in monitoring patients at risk for major amputation. This study shows that the PEDIS classification promises to provide a valid basis for a DFU risk stratification in CDSS.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.