As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
For medical informaticians, it became more and more crucial to assess the benefits and disadvantages of AI-based solutions as promising alternatives for many traditional tools. Besides quantitative criteria such as accuracy and processing time, healthcare providers are often interested in qualitative explanations of the solutions. Explainable AI provides methods and tools, which are interpretable enough that it affords different stakeholders a qualitative understanding of its solutions. Its main purpose is to provide insights into the black-box mechanism of machine learning programs. Our goal here is to advance the problem of qualitatively assessing AI from the perspective of medical informaticians by providing insights into the central notions, namely: explainability, interpretability, understanding, trust, and confidence.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.