As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Clinical decision support systems (CDSSs) implementing cancer clinical practice guidelines (CPGs) have the potential to improve the compliance of decisions made by multidisciplinary tumor boards (MTB) with CPGs. However, guideline-based CDSSs do not cover complex cases and need time for discussion. We propose to learn how to predict complex cancer cases prior to MTBs from breast cancer patient summaries (BCPSs) resuming clinical notes. BCPSs being unstructured natural language textual documents, we implemented four semantic annotators (ECMT, SIFR, cTAKES, and MetaMap) to assess whether complexity-related concepts could be extracted from clinical notes. On a sample of 24 BCPSs covering 35 complexity reasons, ECMT and MetaMap were the most efficient systems with a performance rate of 60% (21/35) and 49% (17/35), respectively. When using the four annotators in sequence, 69% of complexity reasons were extracted (24/35 reasons).
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.