As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Expert systems have a long tradition in both medical informatics and artificial intelligence research. Traditionally, such systems are created by implementing knowledge provided by experts in a system that can be queried for answers. To automatically generate such knowledge directly from data, the lightweight InteKRator toolbox will be introduced here, which combines knowledge representation and machine learning approaches. The learned knowledge is represented in the form of rules with exceptions that can be inspected and that are easily comprehensible. An inference module allows for the efficient answering of queries, while at the same time offering the possibility of providing explanations for the inference results. The learned knowledge can be revised manually or automatically with new evidence after learning.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.