As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
A key challenge in point-of-care clinical trial recruitment is to autonomously identify eligible patients on presentation. Similarly, the aim of computable phenotyping is to identify those individuals within a population that exhibit a certain condition. This synergy creates an opportunity to leverage phenotypes in identifying eligible patients for clinical trials. To investigate the feasibility of this approach, we use the Transform clinical trial platform and replace its archetype-based eligibility criteria mechanism with a computable phenotype execution microservice. Utilising a phenotype for acute otitis media with discharge (AOMd) created with the Phenoflow platform, we compare the performance of Transform with and without the use of phenotype-based eligibility criteria when recruiting AOMd patients. The parameters of the trial simulated are based on those of the REST clinical trial, conducted in UK primary care.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.