As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
In this work, automated abnormality detection using keypoint information from Speeded-Up Robust feature (SURF) and Scale Invariant Feature Transform (SIFT) descriptors in chest Radiographic (CR) images is investigated and compared. Computerized image analysis using artificial intelligence is crucial to detect subtle and non-specific alterations of Tuberculosis (TB). For this, the healthy and TB CRs are subjected to lung field segmentation. SURF and SIFT keypoints are extracted from the segmented lung images. Statistical features from keypoints, its scale and orientation are computed. Discrimination of TB from healthy is performed using SVM. Results show that the SURF and SIFT methods are able to extract local keypoint information in CRs. Linear SVM is found to perform better with precision of 88.9% and AUC of 91% in TB detection for combined features. Hence, the application of keypoint techniques is found to have clinical relevance in the automated screening of non-specific TB abnormalities using CRs.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.