As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
HiGHmed is a German Consortium where eight University Hospitals have agreed to the cross-institutional data exchange through novel medical informatics solutions. The HiGHmed Use Case Infection Control group has modelled a set of infection-related data in the openEHR format. In order to establish interoperability with the other German Consortia belonging to the same national initiative, we mapped the openEHR information to the Fast Healthcare Interoperability Resources (FHIR) format recommended within the initiative. FHIR enables fast exchange of data thanks to the discrete and independent data elements into which information is organized. Furthermore, to explore the possibility of maximizing analysis capabilities for our data set, we subsequently mapped the FHIR elements to the Observational Medical Outcomes Partnership Common Data Model (OMOP CDM). The OMOP data model is designed to support the conduct of research to identify and evaluate associations between interventions and outcomes caused by these interventions. Mapping across standard allows to exploit their peculiarities while establishing and/or maintaining interoperability. This article provides an overview of our experience in mapping infection control related data across three different standards openEHR, FHIR and OMOP CDM.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.